773 research outputs found

    Comparing Results of Five Glomerular Filtration Rate-Estimating Equations in the Korean General Population. MDRD Study, Revised Lund-Malmö, and Three CKD-EPI Equations

    Get PDF
    Estimated glomerular filtration rate (eGFR) is a widely used index of kidney function. Recently, new formulas such as the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations or the Lund-Malmö equation were introduced for assessing eGFR. We compared them with the Modification of Diet in Renal Disease (MDRD) Study equation in the Korean adult population. METHODS: The study population comprised 1,482 individuals (median age 51 [42-59] yr, 48.9% males) who received annual physical check-ups during the year 2014. Serum creatinine (Cr) and cystatin C (CysC) were measured. We conducted a retrospective analysis using five GFR estimating equations (MDRD Study, revised Lund-Malmö, and Cr and/or CysC-based CKD-EPI equations). Reduced GFR was defined as eGFR <60 mL/min/1.73 m². RESULTS: For the GFR category distribution, large discrepancies were observed depending on the equation used; category G1 (≥90 mL/min/1.73 m²) ranged from 7.4-81.8%. Compared with the MDRD Study equation, the other four equations overestimated GFR, and CysC-based equations showed a greater difference (-31.3 for CKD-EPI(CysC) and -20.5 for CKD-EPI(Cr-CysC)). CysC-based equations decreased the prevalence of reduced GFR by one third (9.4% in the MDRD Study and 2.4% in CKD-EPI(CysC)). CONCLUSIONS: Our data shows that there are remarkable differences in eGFR assessment in the Korean population depending on the equation used, especially in normal or mildly decreased categories. Further prospective studies are necessary in various clinical settings

    Stability of an n

    Get PDF
    We investigate the stability problems for the n-dimensional mixed-type additive and quadratic functional equation 2f(∑j=1nxj)+∑1≤i,j≤n,  i≠jf(xi-xj)=(n+1)∑j=1nf(xj)+(n-1)∑j=1nf(-xj) in random normed spaces by applying the fixed point method

    Mechanisms of Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells During Peritoneal Dialysis

    Get PDF
    A growing body of evidence indicates that epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMC) may play an important role in the development and progression of peritoneal fibrosis during long-term peritoneal dialysis (PD) leading to failure of peritoneal membrane function. Here, we review our own observations and those of others on the mechanisms of EMT of HPMC and suggest potential therapeutic strategies to prevent EMT and peritoneal fibrosis during long-term PD. We found that high glucose and H2O2 as well as transforming growth factor-β1 (TGF-β1) induced EMT in HPMC and that high glucose-induced EMT was blocked not only by inhibition of TGF-β1 but also by antioxidants or inhibitors of mitogen-activated protein kinases (MAPK). Since MAPKs are downstream target molecules of reactive oxygen species (ROS), these data suggest that high glucose-induced generation of ROS and subsequent MAPK activation mediate high glucose-induced EMT in HPMC. We and others also observed that bone morphogenetic protein-7 (BMP-7) prevented EMT in HPMC. Glucose degradation products (GDP) were shown to play a role in inducing EMT. Involvement of a mammalian target of rapamycin (mTOR) in TGF-β1-induced EMT has also been proposed in cultured HPMC. A better understanding of the precise mechanisms involved in EMT of HPMC may provide new therapeutic strategies for inhibiting peritoneal fibrosis in long-term PD patients

    EFFECTS OF LIQUID SWIRLING ON GAS-TO-LIQUID MASS TRANSFER IN THREE-PHASE FLUIDIZED BEDS

    Get PDF
    The swirling flow mode of liquid phase was adopted to promote the gas-to-liquid mass transfer in three-phase(gas-liquid-solid) fluidized beds. Effects of gas(0.01-0.09m/s) and liquid(0.035-0.172m/s) velocities, particle size(1.7-6.0mm) and swirling ratio of liquid phase(0-0.5) on the volumetric gas-to-liquid mass transfer coefficient in the bed were examined. The mass transfer coefficient increased up to 70% by adjusting the swirling flow of liquid phase, especially when the gas velocity is relatively low range. The value of gas-to-liquid mass transfer coefficient was well correlated in terms of dimensionless groups which were derived from the dimensional analysis on the mass transfer system

    Precore Mutation of Hepatitis B Virus May Contribute to Hepatocellular Carcinoma Risk: Evidence from an Updated Meta-Analysis

    Get PDF
    BACKGROUND: Studies focused on the correlation of mutations in the genome of Hepatitis B Virus (HBV) like Pre-S mutation, Basal Core promoter (BCP), Enhancer II (EnhII), especially Precore mutation, with the risk of hepatocellular carcinoma (HCC) have triggered stiff controversies. With an increasing number of studies in this field recently, we conducted this meta-analysis to appraise the correlations. METHODS: We searched the commonly used databases both in English and Chinese till February 1(st), 2012. Meta-analysis was performed in fixed/random-effects models using STATA 10.0. Publication bias was examined through Egger's test and Begg's funnel plot. RESULTS: In total, 85 case-control studies were included involving 16745 HBV-infected patients, of whom 5781 had HCC. Statistically significant correlations were observed in Precore mutation G1896A (OR = 1.46, 95% confidence interval [CI] = 1.15-1.85, P(OR) = 0.002), G1899A (OR = 3.13, 95%CI = 2.38-4.13, P(OR)<0.001) and Pre-S mutation especially Pre-S1 deletion (OR = 2.94, 95%CI = 2.22 to 3.89) and Pre-S2 deletion (OR = 3.02, 95%CI = 2.03 to 4.50). Similar correlation existed between BCP double mutation A1762T/G1764A, T1753V, C1653T and HCC. In subgroup analysis, the Asians, genotype C or HBeAg positive patients with certain above mutations may be more susceptible to HCC. Besides, the mutations like G1896A and BCP double mutation may be associated with the progression of the liver diseases. CONCLUSIONS: Precore mutation G1896A, G1899A, deletions in Pre-S region as well as the other commonly seen mutations correlated with the increased risk of HCC, especially in Asians and may predict the progression of the liver disease

    Fifteen-Year Population Attributable Fractions and Causal Pies of Risk Factors for Newly Developed Hepatocellular Carcinomas in 11,801 Men in Taiwan

    Get PDF
    Development of hepatocellular carcinoma (HCC) is a multi-factorial process. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) are important risk factors of HCC. Host factors, such as alcohol drinking, may also play a role. This study aims to provide a synthesis view on the development of HCC by examining multiple risk factors jointly and collectively. Causal-pie modeling technique was applied to analyze a cohort of 11,801 male residents (followed up for 15 years) in Taiwan, during which a total of 298 incident HCC cases were ascertained. The rate ratios adjusted by age were further modeled by an additive Poisson regression. Population attributable fractions (PAFs) and causal-pie weights (CPWs) were calculated. A PAF indicates the magnitude of case-load reduction under a particular intervention scenario, whereas a CPW for a particular class of causal pies represents the proportion of HCC cases attributable to that class. Using PAF we observed a chance to reduce around 60% HCC risk moving from no HBV-related intervention to the total elimination of the virus. An additional ∼15% (or ∼5%) reduction can be expected, if the HBV-related intervention is coupled with an HCV-related intervention (or an anti-drinking campaign). Eight classes of causal pies were found to be significant, including four dose-response classes of HBV (total CPW=52.7%), one independent-effect class of HCV (CPW=14.4%), one HBV-alcohol interaction class (CPW=4.2%), one HBV-HCV interaction class (CPW=1.7%), and one all-unknown class (CPW=27.0%). Causal-pie modeling for HCC helps clarify the relative importance of each viral and host factor, as well as their interactions

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis
    corecore